Search results for "Matrix composite"
showing 10 items of 70 documents
Quasi-static behaviour and damage assessment of flax/epoxy composites
2015
Experimental investigations were conducted on flax and E-glass fibres reinforced epoxy matrix composites subjected to quasi-static loadings. Flax/epoxy samples having [0]12, [90]12, [0/90]3S and [±45]3S stacking sequences, with a fibre volume fraction of 43% have been tested under tension, compression and in-plane shear loadings. Overall, the compression strength of glass/epoxy was 76% greater than for the flax/epoxy composite. The damage evolution of flax/epoxy of [0/90]3S and [±45]3S samples has been evaluated in terms of transverse crack densities with respect to the load increment. The crack density exhibited a classical “S” shaped pattern for [0/90]3S and linearly for [±45]3S specimens…
Influence of friction stir processing conditions on the manufacturing of Al-Mg-Zn-Cu alloy/boron carbide surface composite
2018
Abstract Surface metal matrix composites were synthesized via friction stir processing (FSP) on the surface of aluminium alloy 7075 (AA 7075) sheets by incorporating B4C particles (B4CP). The influence of tool rotational speeds, powder particle sizes, and change in tool travel direction between FSP passes on particle distribution and resulting properties were studied in detail. Change in tool travel direction, decreased tool rotation speed and fine B4C particles enhanced B4CP distribution and wear properties thereof. Wear resistance of composites were doubled on account of the B4CP distribution and resultant several strengthening mechanisms.
Enhancement of mechanical properties of FSWed AA7075 lap joints through in-situ fabrication of MMC
2017
Abstract Friction Stir Processing (FSP) has been demonstrated feasible to create local Metal Matrix Composites (MMCs) in light alloys matrix. In this research, local MMCs were produced contextually to the weld using Friction Stir Welding (FSW). SiC particles were added to AA7075 lap joints by creating a proper groove on the top surface of the bottom sheet. Different welds were produced with increasing number of tool passes. The effect of the multiple passes was investigated through shear tests, macro and micro observations, average grain size and microhardness measurements. The welded joints were compared to a reference weld produced with no reinforcements. It was found that poor mixing bet…
Effect of active heating and cooling on microstructure and mechanical properties of friction stir–welded dissimilar aluminium alloy and titanium butt…
2019
A butt joint configuration of AA6061–pure Ti was welded using friction stir welding (FSW) with an assisted cooling and heating conditions, aiming to attain a flawless joint. Cooling-assisted friction stir welding (CFSW) was carried out with a different cooling medium such as CO2, compressed air and water at controlled flow rate. However, heating-assisted friction stir welding (HFSW) was performed with heating source of GTAW torch just before FSW tool at different current density. Prepared specimens were subjected to optical microscopy (OM), scanning electron microscopy (SEM) and electrodischarge spectroscopy (EDS) for microstructural characterizations. The tensile strength and microhardness…
Al-SiC Metal Matrix Composite production through Friction Stir Extrusion of aluminum chips
2017
Abstract The production of most mechanical component requires machining operation, thus usually implying the cut material to be wasted as scrap. Traditional recycling techniques are not able to efficiently recycle metal chips because of some critical aspects that characterize such kind of scraps (shape, oxide layers, contaminating residues, etc). Friction Stir Extrusion is an innovative solid state direct-recycling technique for metal machining chips. During the process, a rotating tool is plunged into a hollows matrix to compact, stir and finally, back extrudes the chips to be recycled in a full dense rod. This process results to be particularly relevant since no preliminary treatment of t…
Green composites: A brief review
2011
The rising concern towards environmental issues and, on the other hand, the need for more versatile polymer-based materials has led to increasing interest about polymer composites filled with natural-organic fillers, i.e. fillers coming from renewable sources and biodegradable. The composites, usually referred to as "green", can find several industrial applications. On the other hand, some problems exist, such as worse processability and reduction of the ductility. The use of adhesion promoters, additives or chemical modification of the filler can help in overcoming many of these limitations. These composites can be further environment-friendly when the polymer matrix is biodegradable and c…
Effect of filler on the creep characteristics of epoxy and epoxy-based CFRPs containing multi-walled carbon nanotubes
2014
The aim of this work was to determine the effect of carbon nanotubes (CNTs) on the elastic and viscoelastic properties of an epoxy resin used in carbon fiber-reinforced plastics (CFRPs) in the matrix-dominated flexural testing mode. Neat and CNTs-containing (1. wt.%) epoxy resin and CFRP specimens were prepared and investigated. Three-point bending tests were carried out on nanocomposite (NC) and CFRP specimens at room temperature in quasi-static and cyclic creep regimes. The main effect of CNTs was observed in the reduction of creep compliance of epoxy (40%) and CFRP (30%), especially at higher stresses. The reduction of creep characteristics especially on viscoelastic and plastic strains …
Processing and characterization of highly oriented fibres of biodegradable nanocomposites
2015
Abstract Biodegradable polymeric materials are becoming day by day ever more important in packaging, agriculture, single-use cutleries and other large consumer applications. The major part of those materials is used under the form of film, i.e. subjected to elongational flow, but the main problem is that they often offer poor mechanical properties. Adding nanofillers, like Multi Walled Carbon Nanotubes (MWCNTs) may solve this problem but only if there is a full control of their orientation inside the material. Aim of this work is to investigate the processing-properties-morphology relationships for a system prepared under elongation flow of MaterBi and commercial MWCNTs. The materials were …
High performance composites containing perfluoropolyethers-functionalized carbon-based nanoparticles: Rheological behavior and wettability
2016
Abstract Ultra High Molecular Weight Polyethylene (UHMWPE) based composites filled with carbon nanotubes (CNTs) and carbon black (CB) modified by perfluoropolyethers (PFPE) have been formulated. All composites show a segregated morphology with nanofillers selectively localized at the polymer particle–particle interface. The composites rheological properties have been deeply investigated: the PFPE functionalities linked on CNTs facilitate the semi-3D nanofillers network formation in the composites that show a solid-like behaviour even at lower investigated filler contents, reaching the rheological percolation threshold at lower nanofiller content than bare CNTs filled composites. For composi…
A review on basalt fibre and its composites
2015
Abstract In recent years, both industrial and academic world are focussing their attention toward the development of sustainable composites, reinforced with natural fibres. In particular, among the natural fibres (i.e. animal, vegetable or mineral) that can be used as reinforcement, the basalt ones represent the most interesting for their properties. The aim of this review is to illustrate the results of research on this topical subject. In the introduction, mechanical, thermal and chemical properties of basalt fibre have been reviewed. Moreover, its main manufacturing technologies have been described. Then, the effect of using this mineral fibre as reinforcement of different matrices as po…